Skip to content

Volume of Revolution

Tags
Calculus
Cegep/2
Word count
587 words
Reading time
4 minutes

Application of the definite integral

For one curve:

Integration perpendicular to the axis of rotation:

Let r be the radius function, then

V=πabr2(x)dx

Integration parallel to the axis of rotation:

Let r and h be the radius and height functions, then

V=2πabr(x)h(x)dx

For two curves:

Let R and r be the outer and inner radius functions, then

V=πab(R2(x)r2(x))dx

Examples

Find the formula for the volume of a sphere.

V=πrrf2(x)dx=2π0rf2(x)dx=2π0r|r2x2|dx=2π|r3x33|0r=2π((r3r33)(r3033))=

Find the volume of the solid generated by rotating the region bounded by:

y=x2 and y=3x. about 1. the x axis, 2. the y axis.

The two lines intersect at (0,0) and (3,9).

x axis:

V=π03(9x2x4)dx=π[3x3x55]03=π(333355)=32.4π

y axis:

V=π09(yy29)dy=π[y22y327]09=π(9229327)=13.5πV=π04((y+16)2(16)2)dy=π04(y10y)dy=π[y2220y323]04=π(422204323)=1363π

x=y24, the x-axis, the y-axis, and y=1.

V=π01f2(y)dy=π01(0y2+4)2dy=π[y558y33+16y]01=π(1558133+161)=20315π

y=ex, y=1, x=2 about y=2.

V=π02(f2(x)g2(x))dx=π02(1(ex)2)dx=π[x+e2x2]02=π(2+e2220e202)=1.5091π

x2+y22x=0 about the y axis.

V=2πabr(x)h(x)dx=2π02x(22xx2)dx=4π02x2xx2dx=4π02x(x22x+1)+1dx

Find the volume of a right circular cone with height h and base radius r.

V=2π0rr(x)h(x)dx=2π0rxh(1xr)dx=2πh0r(xx2r)dx=2πh[x22x33r]0r=πhr23

Contributors

Changelog